Coherence (scalar theory) **8.7**

Mutual coherence function	$\Gamma_{12}(\tau) = \langle \psi_1(t)\psi_2^*(t+\tau)\rangle$	(8.97)	Γ_{ij} mutual coherence function τ temporal interval ψ_i (complex) wave disturbance at spatial point i
Complex degree of coherence	$\gamma_{12}(\tau) = \frac{\langle \psi_1(t)\psi_2^*(t+\tau)\rangle}{[\langle \psi_1 ^2\rangle\langle \psi_2 ^2\rangle]^{1/2}} = \frac{\Gamma_{12}(\tau)}{[\Gamma_{11}(0)\Gamma_{22}(0)]^{1/2}}$	(8.98) (8.99)	t time $\langle \cdot \rangle$ mean over time γ_{ij} complex degree of coherence * complex conjugate
Combined intensity ^a	$I_{\text{tot}} = I_1 + I_2 + 2(I_1 I_2)^{1/2} \Re[\gamma_{12}(\tau)]$	(8.100)	I_{tot} combined intensity I_i intensity of disturbance at point i \Re real part of
Fringe visibility	$V(\tau) = \frac{2(I_1 I_2)^{1/2}}{I_1 + I_2} \gamma_{12}(\tau) $	(8.101)	
if $ \gamma_{12}(\tau) $ is a constant:	$V = \frac{I_{\text{max}} - I_{\text{min}}}{I_{\text{max}} + I_{\text{min}}}$	(8.102)	$I_{ m max}$ max. combined intensity $I_{ m min}$ min. combined intensity
if $I_1 = I_2$:	$V(\tau) = \gamma_{12}(\tau) $	(8.103)	
Complex degree of temporal	$\gamma(\tau) = \frac{\langle \psi_1(t)\psi_1^*(t+\tau)\rangle}{\langle \psi_1(t)^2 \rangle}$	(8.104)	$\gamma(\tau)$ degree of temporal coherence $I(\omega)$ specific intensity
coherence ^b	$= \frac{\int I(\omega) e^{-i\omega\tau} d\omega}{\int I(\omega) d\omega}$	(8.105)	ω radiation angular frequency c speed of light
Coherence time and length	$\Delta \tau_{\rm c} = \frac{\Delta l_{\rm c}}{c} \sim \frac{1}{\Delta \nu}$	(8.106)	$\Delta \tau_c$ coherence time Δl_c coherence length $\Delta \nu$ spectral bandwidth
Complex degree of spatial	$\gamma(\mathbf{D}) = \frac{\langle \psi_1 \psi_2^* \rangle}{[\langle \psi_1 ^2 \rangle \langle \psi_2 ^2 \rangle]^{1/2}}$	(8.107)	$\gamma(D)$ degree of spatial coherence D spatial separation of points 1 and 2
coherence ^c	$= \frac{\int I(\hat{s}) e^{ikD\cdot\hat{s}} d\Omega}{\int I(\hat{s}) d\Omega}$	(8.108)	$I(\hat{s}) \text{ specific intensity of distant} \\ \text{extended source in direction } \hat{s} \\ \text{d} \\ \Omega \text{ differential solid angle}$
Intensity correlation ^d	$\frac{\langle I_1 I_2 \rangle}{[\langle I_1 \rangle^2 \langle I_2 \rangle^2]^{1/2}} = 1 + \gamma^2(\boldsymbol{D})$	(8.109)	\hat{s} unit vector in the direction of $d\Omega$ k wavenumber
Speckle intensity distribution ^e	$\operatorname{pr}(I) = \frac{1}{\langle I \rangle} e^{-I/\langle I \rangle}$	(8.110)	pr probability density
Speckle size (coherence width)	$\Delta w_{ m c} \simeq rac{\lambda}{lpha}$	(8.111)	Δw_c characteristic speckle size λ wavelength α source angular size as seen from the screen

^aFrom interfering the disturbances at points 1 and 2 with a relative delay τ .

bOr "autocorrelation function."

Between two points on a wavefront, separated by D. The integral is over the entire extended source.

Between two points on a wavefront, separated by D. The integral is over the entire extended source.

Between two points on a wavefront, separated by D. The integral is over the entire extended source. from a thermal source.

 $[^]e$ Also for Gaussian light.